Daily fluctuation of colonic microbiome in response to nutrient substrates in a pig model

Author:

Wang HongyuORCID,Xu RongyingORCID,Li QiukeORCID,Su YongORCID,Zhu Weiyun

Abstract

AbstractStudies on rodents indicate the daily oscillations of the gut microbiota have biological implications for host. However, the responses of fluctuating gut microbes to the dynamic nutrient substrates are not fully clear. In the study, we found that the feed intake, nutrient substrates, microbiota and metabolites in the colon underwent asynchronous oscillation within a day. Short-chain fatty acids (SCFAs) including acetate, propionate, butyrate and valerate peaked during T24 ~ T27 (Timepoint 24, 12:00 pm, T27, 03:00 am) whereas branched SCFAs isobutyrate and isovalerate peaked during T09 ~ T12. Further extended local similarity analysis (eLSA) revealed that the fluctuation of feed intake dynamically correlated with the colonic carbon substrates which further influenced the oscillation of sugar metabolites and acetate, propionate, butyrate and valerate with a certain time shift. The relative abundance of primary degrader Ruminococcaceae taxa was highly related to the dynamics of the carbon substrates whereas the fluctuations of secondary degraders Lactobacillaceae and Streptococcaceae taxa were highly correlated with the sugar metabolites. Meanwhile, colonic nitrogen substrates were correlated with branched amino acids and the branched SCFAs. Furthermore, we validated the evolution of gut microbes under different carbohydrate and protein combinations by using an in vitro fermentation experiment. The study pictured the dynamics of the micro-ecological environment within a day which highlights the implications of the temporal dimension in studies related to the gut microbiota. Feed intake, more precisely substrate intake, is highly correlated with microbial evolution, which makes it possible to develop chronotherapies targeting the gut microbiota through nutrition intervention.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3