Abstract
AbstractQuantum technology provides a ground-breaking methodology to tackle challenging computational issues in power systems. It is especially promising for Distributed Energy Resources (DERs) dominant systems that have been widely developed to promote energy sustainability. In those systems, knowing the maximum sections of power and data delivery is essential for monitoring, operation, and control. However, high computational effort is required. By leveraging quantum resources, Quantum Approximate Optimization Algorithm (QAOA) provides a means to search for these sections efficiently. However, QAOA performance relies heavily on critical parameters, especially for weighted graphs. Here we present a data-driven QAOA, which transfers quasi-optimal parameters between weighted graphs based on the normalized graph density. We verify the strategy with 39,774 expectation value calculations. Without parameter optimization, our data-driven QAOA is comparable with the Goemans-Williamson algorithm. This work advances QAOA and pilots its practical application to power systems in noisy intermediate-scale quantum devices.
Funder
United States Department of Defense | United States Navy | Office of Naval Research
Office of the Director of National Intelligence
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献