A data-driven digital twin for water ultrafiltration

Author:

Møller Jan KloppenborgORCID,Goranović GoranORCID,Brath Per,Madsen Henrik

Abstract

AbstractMembrane-based separations are proven and useful industrial-scale technologies, suitable for automation. Digital twins are models of physical dynamical systems which continuously couple with data from a real world system to help understand and control performance. However, ultrafiltration and microfiltration membrane separation techniques lack a rigorous theoretical description due to the complex interactions and associated uncertainties. Here we report a digital-twin methodology called the Stochastic Greybox Modelling and Control (SGMC) that can account for random changes that occur during the separation processes and apply it to water ultrafiltration. In contrast to recent probabilistic approaches to digital twins, we use a physically intuitive formalism of stochastic differential equations to assess uncertainties and implement updates. We demonstrate the application of our digital twin model to control the filtration process and minimize the energy use under a fixed water volume in a membrane ultrafiltration of artificially simulated lakewater. The explicit modelling of uncertainties and the adaptable real-time control of stochastic physical states are particular strengths of SGMC, which makes it suited to real-world problems with inherent unknowns.

Funder

Innovationsfonden

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Baker, R. W. Membrane Technology and Application 2nd edn (John Wiley & Sons, Ltd., 2004).

2. Probstein, R. F. Physicochemical Hydrodynamics: An Introduction 2nd edn (John Wiley & Sons, Inc., 1994).

3. Ripperger, S., Gösele, W. & Alt, C. Ullmann’s Encyclopedia of Industrial Chemistry Vol. 14 (Wiley-VCH Verlag GmbH & Co. KGaA, 2012).

4. Žuk, J. S. Computer simulation of ultrafiltration processes. J. Membr. Sci. 36, 201–206 (1988).

5. Wang, Y., Wang, S. & YU, K. A statistic model of pore-size distributions in membranes. J. Membr. Sci. 72, 13–20 (1992).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3