Deep learning-based approach for high spatial resolution fibre shape sensing

Author:

Manavi Roodsari SamanehORCID,Freund Sara,Angelmahr Martin,Seppi Carlo,Rauter Georg,Schade Wolfgang,Cattin Philippe C.ORCID

Abstract

AbstractFiber optic shape sensing is an innovative technology that has enabled remarkable advances in various navigation and tracking applications. Although the state-of-the-art fiber optic shape sensing mechanisms can provide sub-millimeter spatial resolution for off-axis strain measurement and reconstruct the sensor’s shape with high tip accuracy, their overall cost is very high. The major challenge in more cost-effective fiber sensor alternatives for providing accurate shape measurement is the limited sensing resolution in detecting shape deformations. Here, we present a data-driven technique to overcome this limitation by removing strain measurement, curvature estimation, and shape reconstruction steps. We designed an end-to-end convolutional neural network that is trained to directly predict the sensor’s shape based on its spectrum. Our fiber sensor is based on easy-to-fabricate eccentric fiber Bragg gratings and can be interrogated with a simple and cost-effective readout unit in the spectral domain. We demonstrate that our deep-learning model benefits from undesired bending-induced effects (e.g., cladding mode coupling and polarization), which contain high-resolution shape deformation information. These findings are the preliminary steps toward a low-cost yet accurate fiber shape sensing solution for detecting complex multi-bend deformations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3