Abstract
AbstractOccupational back exoskeletons and exosuits aim to reduce low back injuries in the workplace. For these technologies to be adopted, it is important that they provide biomechanical benefits to the wearer and do not disrupt job performance. To address this challenge, here we developed a lightweight, soft, active back exosuit that can autonomously control virtual impedance to apply differing assistance during lowering and lifting. In usability tests, participants rated the exosuit as easy to learn and use and reported feeling confident while wearing it. In an experiment involving an hour-long order picking task we demonstrated that the exosuit reduced peak and median muscle activations in the back by 18% and 20%, respectively. Despite the complexity of the movements required, such as walking, bending, and navigating around obstacles while lifting boxes from under a rack, our controller demonstrated impressive robustness with only 14 mistriggers out of 9600 lifts (0.1%). The results of this research suggest that active exosuit technology has the potential to be a highly usable solution to aid warehouse workers in real-world settings.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases
U.S. Department of Defense
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献