RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/β-catenin signaling

Author:

Mei Ying,Liu Yong-Bin,Cao Shan,Tian Zheng-Wen,Zhou Hong-Hao

Abstract

AbstractWnt/β-catenin signaling is essential for proliferation and maintenance of cancer stem cell-like traits of various cancer cells. In non-small-cell lung carcinoma (NSCLC), the mechanisms underlying the hyperactivation of Wnt signaling remain unclear, as mutations in APC and β-catenin genes are rare in NSCLC. RIF1 has been shown upregulated in breast and cervical cancer, this study intends to find out the potential effects of the expression and biological functions of RIF1 in NSCLC. Here we revealed that RIF1 was highly expressed in NCSLC at both mRNA and protein levels. RIF1 expression was significantly associated with clinical stage (P < 0.05) and prognosis (P < 0.001) of NSCLC patients. RIF1 knockdown inhibited NSCLC cell growth in vitro and in vivo, whereas overexpression of RIF1 in NSCLC cell lines promoted cell growth, cell cycle progression and cancer stem cell (CSC)-like properties via promoting PP1–AXIN interaction and thereby activating Wnt/β-catenin signaling. Inhibition of PP1 in RIF1-overexpressed cells counteracted the effects of RIF1 on cell growth and CSC-like phenotype, as well as the Wnt/β-catenin signaling. RIF1 expression was positively correlated with β-catenin at the protein level in 32 NSCLC tissues. RIF1 expression closely related to MYC (r = 0.28, P < 0.001) and CCND1 (r = 0.14, P < 0.01) expression at the mRNA level in cohorts of The Cancer Genome Atlas (TCGA). These results indicated that RIF1 had an oncogenic role as a novel positive regulator of Wnt/β-catenin signaling by directing PP1 to dephosphorylate AXIN; this novel mechanism may present a new therapeutic target for NSCLC.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3