Hypoxia-induced PLOD2 promotes clear cell renal cell carcinoma progression via modulating EGFR-dependent AKT pathway activation

Author:

Liu Tao,Xiang Wan,Chen Zhizhuang,Wang Gang,Cao RuiORCID,Zhou Fenfang,Meng ZheORCID,Luo YongwenORCID,Chen LiangORCID

Abstract

AbstractClear cell renal cell carcinoma (ccRCC) is a type of kidney cancer that is both common and aggressive, with a rising incidence in recent decades. Hypoxia is a key factor that plays a vital role in the tumorigenesis and metastasis of malignancy. However, the precise mechanisms of hypoxia driving ccRCC progression were not totally uncovered. Our study found that hypoxia level was elevated in ccRCC and might be an independent risk factor of prognosis in ccRCC patients. We identified a key protein PLOD2 was induced under hypoxic conditions and strongly associated with poor prognosis in ccRCC patients. When PLOD2 was depleted, the proliferation and migration of ccRCC cells were reduced in vitro and in vivo, while overexpression of PLOD2 had the opposite effect. Mechanically, the study further revealed that PLOD2 was transcriptionally activated by HIF1A, which binds to a specific promoter region of the PLOD2 gene. PLOD2 was also shown to interact with EGFR, leading to the phosphorylation of the receptor. Furthermore, PLOD2 was responsible for binding to the extracellular domain of EGFR, which ultimately activated the AKT signaling pathway, thus promoting the malignant progression of ccRCC. Treatment with the PLOD2 inhibitor Minoxidil significantly suppressed ccRCC progression by inactivating the EGFR/AKT signaling axis. In summary, the findings of this study shed light on the molecular mechanisms behind PLOD2 expression in ccRCC and suggest that it may serve as a potential predictor and therapeutic target for the clinical prognosis and treatment of ccRCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3