Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC

Author:

Gu Junfei,Zhang Yong,Han Zhenwei,Gao Lei,Cui Jinfeng,Sun Yin,Niu Yuanjie,You Bosen,Huang Chi-Ping,Chang Chawnshang,Wang Xiaolu,Yeh ShuyuanORCID

Abstract

AbstractSunitinib has been used as the main therapy to treat the metastatic clear cell renal cell carcinoma (ccRCC) as it could function via suppressing the tumor growth and angiogenesis. Yet most ccRCC tumors may still regrow due to the development of sunitinib-resistance, and detailed mechanisms remain to be further investigated. The angiopoietin family includes angiopoietin-1 and angiopoietin-2 (ANGPT-1 and -2). It was reported that estradiol regulates expression of ANGPT-1, but not ANGPT-2, through estrogen receptor α (ERα) in an experimental stroke model. To date, there is no finding to link the E2/ER signal on regulating ANGPT-2. Our study is the first to explore (i) how estrogen receptor β (ERβ) can up-regulate ANGPT-2 in RCC cells, and (ii) how ERβ-increased ANGPT-2 can promote the HUVEC tube formation and reduce sunitinib sensitivity. Mechanistic studies revealed that ERβ could function via transcriptional regulation of the cytokine ANGPT-2 in the ccRCC cells. We found the up-regulated ANGPT-2 of RCC cells could then increase the Tie-2 phosphorylation to promote the angiogenesis and increase sunitinib treatment resistance of endothelial cells. In addition to the endothelial cell tube formation and aortic ring assay, preclinical studies with a mouse RCC model also confirmed the finding. Targeting this newly identified ERβ/ANGPT-2/Tie-2 signaling pathway with the FDA-approved anti-estrogen, Faslodex, may help in the development of a novel combined therapy with sunitinib to better suppress the ccRCC progression.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3