Abstract
AbstractLeukocyte-associated immunoglobulin-like receptor-1 (LAIR1), an immune receptor containing immunoreceptor tyrosine-based inhibiory motifs (ITIMs), has emerged as an attractive target for cancer therapy. However, the intrinsic function of LAIR1 in gliomas remains unclear. In this study, the poor prognosis of glioma patients and the malignant proliferation of glioma cells in vitro and in vivo were found to be closely correlated with LAIR1. LAIR1 facilitates focal adhesion kinase (FAK) nuclear localization, resulting in increased transcription of cyclin D1 and chemokines/cytokines (CCL5, TGFβ2, and IL33). LAIR1 specifically supports in the immunosuppressive glioma microenvironment via CCL5-mediated microglia/macrophage polarization. SHP2Q510E (PTP domain mutant) or FAKNLM (non-nuclear localizing mutant) significantly reversed the LAIR1-induced growth enhancement in glioma cells. In addition, LAIR1Y251/281F (ITIMs mutant) and SHP2Q510E mutants significantly reduced FAK nuclear localization, as well as CCL5 and cyclin D1 expression. Further experiments revealed that the ITIMs of LAIR1 recruited SH2-containing phosphatase 2 (SHP2), which then interacted with FAK and induced FAK nuclear localization. This study uncovered a critical role for intrinsic LAIR1 in facilitating glioma malignant progression and demonstrated a requirement for LAIR1 and SHP2 to enhance FAK nuclear localization.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献