Hsa_circ_0021727 (circ-CD44) promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway

Author:

Meng Fan,Zhang Xiaokang,Wang Yanting,Lin Jie,Tang Yulin,Zhang Guisheng,Qiu Binqiang,Zeng Xingdu,Liu Weiyou,He Xin

Abstract

AbstractEsophageal squamous cell carcinoma (ESCC) is characterized by high morbidity and mortality. Circular RNAs (circRNAs) play an important role in tumor progression. We discovered an aberrantly expressed circRNA (hsa_circ_0021727) in patients with ESCC. However, the mechanism of action of hsa_circ_0021727 in tumors is unclear. The present study aimed to investigate the biological role of hsa_circ_0021727 and its mechanism in ESCC progression. We screened for the expression of hsa_circ_0021727 in ESCC patients. Patients with ESCC with high expression of hsa_circ_0021727 had shorter survival than those with low expression. Hsa_circ_0021727 promoted the proliferation, invasion, and migration of ESCC cells. However, miR-23b-5p inhibited this ability of hsa_circ_0021727. MiR-23b-5p acts by targeting TAK1-binding protein 1 (TAB1). Upregulation of TAB1 can activate the nuclear factor kappa B (NFκB) pathway. Hsa_circ_0021727 promoted ESCC progression by activating TAB1/NFκB pathway by sponging miR-23b-5p. In addition, in vivo experiments also confirmed that hsa_circ_0021727 could promote the proliferation, invasion, and migration of ESCC cells. In short, hsa_circ_0021727 promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. These findings might provide potential targets to treat ESCC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Education Department of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks;Cell Death & Disease;2024-01-04

2. Synthetic RNA Therapeutics in Cancer;Journal of Pharmacology and Experimental Therapeutics;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3