NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling

Author:

Chen Xueliang,Liu Ganglei,Yuan Yuanyuan,Wu Guotao,Wang Shalong,Yuan Lianwen

Abstract

AbstractInflammatory bowel disease (IBD) is one of the most common diseases in the gastrointestinal tract related to aberrant inflammation. Pyroptosis, which is characterized by inflammasome formation, the activation of caspase-1, and the separation of the N- and C-terminals of GSDMD, might be related to IBD pathogenesis. NEK7 is an important component of the NLRP3 inflammasome in macrophages. We attempted to investigate the mechanism of NEK7 interacting with NLRP3 to modulate the pyroptosis in IBD. NEK7 mRNA and protein expression and pyroptosis-associated factors, including Caspase-1 (p45, p20), NLRP3, and GSDMD, were upregulated in IBD tissues. NEK7 knockdown abolish ATP + LPS-induced pyroptosis in vitro and improved DSS-induced chronic colitis in vivo. NEK7 interacted with NLRP3, as revealed by Co-IP and GST pull-down assays, to exert its effects. Moreover, short-term LPS treatment alone induced no significant changes in NEK7 protein level. TLR4/NF-κB signaling in MODE-K cells could be activated by LPS treatment. LPS-induced NEK7 upregulation could be significantly reversed by JSH-23, an inhibitor of p65. Furthermore, LUC and ChIP assays revealed that RELA might activate the transcription of NEK7 via targeting its promoter region. LPS-induced TLR4/NF-κB activation causes an increase in NEK7 expression by RELA binding NEK7 promoter region. In conclusion, NEK7 interacts with NLRP3 to modulate NLRP3 inflammasome activation, therefore modulating the pyroptosis in MODE-K cells and DSS-induced chronic colitis in mice. We provide a novel mechanism of NEK7-NLRP3 interaction affecting IBD via pyroptosis.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3