High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders

Author:

Mkrtchyan Garik V.,Veviorskiy Alexander,Izumchenko Evgeny,Shneyderman Anastasia,Pun Frank W.,Ozerov Ivan V.,Aliper Alex,Zhavoronkov AlexORCID,Scheibye-Knudsen MortenORCID

Abstract

AbstractMultiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform (https://pandaomics.com/) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3