Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis

Author:

Lu Chao,Qiao Pengyun,Fu Ruihai,Wang Yadi,Lu Jiayi,Ling Xi,Liu Lu,Sun Yujun,Ren Chune,Yu ZhenhaiORCID

Abstract

AbstractEndometriosis (EM) is one of the vanquished wonted causes of chronic pelvic sting in women and is closely associated with infertility. The long-term, complex, systemic, and post-treatment recurrence of EM wreaks havoc on women’s quality of life. Extensive metabolic reprogramming (aerobic glycolysis, glucose overweening intake, and high lactate production) and cancer-like changes have been found in EM, which bears striking similarities to tumorigenesis. The key glycolysis regulator PFKFB4 is overexpressed in EM. However, the mechanism of PFKFB4 in EM remains unknown. We found that PFKFB4 was upregulated and was closely related to the progression of EM. We identified focus PIM2 as a new pioneering adjoin protein of PFKFB4. Vigorous biochemical methods were used to confirm that PIM2 phosphorylated site Thr140 of PFKFB4. PIM2 also could enhance PFKFB4 protein expression through the ubiquitin–proteasome pathway. Moreover, PIM2 expression was really corresponding prevalent with PFKFB4 in endometriosis in vivo. Importantly, phosphorylation of PFKFB4 on Thr140 by PIM2 promoted EM glycolysis and cell growth. Our study demonstrates that PIM2 mediates PFKFB4 Thr140 phosphorylation thus regulating glycolysis and EM progression. We illustrated a new mechanism that PIM2 simulated a central upstream partnership in the regulation of PFKFB4, and reveal a novel means of PIM2-PFKFB4 setting EM growth. Our research provided new theoretical support for further clarifying the reprogramming of EM glucose metabolism, and provided new clues for exploring non-contraceptive treatments for EM.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3