The protective effects of systemic dexamethasone on sensory epithelial damage and hearing loss in targeted Cx26-null mice

Author:

Xu Kai,Chen Sen,Xie Le,Qiu Yue,Liu Xiao-zhou,Bai Xue,Jin Yuan,Wang Xiao-hui,Sun YuORCID

Abstract

AbstractMutations in the GJB2 gene (encoding Connexin26(Cx26)) are the most common cause of hereditary deafness, accounting for about a quarter of all cases. Sensory epithelial damage is considered to be one of the main causes of deafness caused by GJB2 gene mutation. Dexamethasone (DEX) is widely used in the treatment of a variety of inner ear diseases including sudden sensorineural hearing loss (SSNHL), noise-induced hearing loss (NIHL), and deafness caused by ototoxic drugs. Whether DEX has a direct therapeutic effect on hereditary deafness, especially GJB2-related deafness, remains unclear. In this study, we revealed that DEX can effectively prevent hair cell death caused by oxidative stress in cochlear explants. Additionally, two distinct Cx26-null mouse models were established to investigate whether systemic administration of DEX alleviate the cochlear sensory epithelial injury or deafness in these models. In a specific longitudinally Cx26-null model that does not cause deafness, systemic administration of DEX prevents the degeneration of outer hair cells (OHCs) induced by Cx26 knockout. Similarly, in a targeted-Deiter’s cells (DCs) Cx26-null mouse model that causes deafness, treatment with DEX can almost completely prevent OHCs loss and alleviates auditory threshold shifts at some frequencies. Additionally, we observed that DEX inhibited the recruitment of CD45-positive cells in the targeted-DCs Cx26-null mice. Taken together, our results suggest that the protective effect of dexamethasone on cochlear sensory epithelial damage and partially rescue auditory function may be related to the regulation of inner ear immune response in Cx26 deficiency mouse models.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3