Abstract
AbstractLysosomes are central organelles for cellular degradation and energy homeostasis. In addition, lysosomal membrane permeabilization (LMP) and subsequent release of lysosomal content to the cytosol can initiate programmed cell death. The extent of LMP and available repair mechanisms determine the cell fate after lysosomal damage. In this study, we aimed to investigate the premises for lysosomal membrane repair after LMP and found that lysosomal membrane damage initiated by l-leucyl-l-leucine methyl ester (LLOMe) caused caspase-dependent apoptosis in almost 50% of the cells, while the rest recovered. Immediately after LLOMe addition, lysosomal proteases were detected in the cytosol and the ESCRT-components ALIX and CHMP4B were recruited to the lysosomal membrane. Next, lysophagic clearance of damaged lysosomes was evident and a concentration-dependent translocation of several lysosomal membrane proteins, including LAMP2, to the cytosol was found. LAMP2 was present in small vesicles with the N-terminal protein chain facing the lumen of the vesicle. We conclude that lysophagic clearance of damaged lysosomes results in generation of lysosomal membrane protein complexes, which constitute small membrane enclosed units, possibly for recycling of lysosomal membrane proteins. These lysosomal membrane complexes enable an efficient regeneration of lysosomes to regain cell functionality.
Funder
Cancerföreningen i Stockholm
Stiftelseförvaltningen vid Region Östergötland
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献