ZHX2 drives cell growth and migration via activating MEK/ERK signal and induces Sunitinib resistance by regulating the autophagy in clear cell Renal Cell Carcinoma

Author:

Zhu Liangsong,Ding Rong,Yan Hao,Zhang Jin,Lin Zongming

Abstract

AbstractZinc fingers and homeoboxes 2 (ZHX2) was found as a novel VHL substrate target, and acted as an oncogenic driver in ccRCC. However, the detailed mechanism of ZHX2 in ccRCC development remains elusive, and no research has focused on studying ZHX2 in drug resistance yet. A tissue microarray with 358 ccRCC samples was used to determine the expression of ZHX2 in ccRCC patients. VHL-deficient cell line 786-O and VHL-normal cell line CAKI-1 was used for lineage reprogramming by transfecting with lentivirus. The in vitro and in vivo experiments were performed with these new cell lines to determine the mechanism of ZHX2 in ccRCC development and drug resistance. Immunohistochemistry analysis showed that ZHX2 was not highly expressed in ccRCC tumor tissues, only 33.2% (119/358) patients have high ZHX2 expression. However, high ZHX2 was significantly associated with advanced Fuhrman grade (p = 0.004), and proved to be an independent prognosis factor for progression-free survival (p = 0.0003), while there is no significant correlation with overall survival. We further discovered that ZHX2 overexpression could increase VEGF secretion and transcriptional activate the MEK/ERK1/2 and promote its downstream targets. We also found ZHX2 overexpression induce Sunitinib resistance though activating autophagy and the combination treatment of Sunitinib and Chloroquine could significantly rescue the phenomenon. In summary, these results indicate that ZHX2 drivers cell growth, migration though increase VEGF expression, and transcriptional activate MEK/ERK1/2 signaling pathway, and could induce Sunitinib resistance by regulating self-protective autophagy, these may provide new insight in advanced ccRCC treatment.

Funder

Shanghai Science and Technology Development Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3