Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity

Author:

Shi Hao-Song,Lai Ke,Yin Xin-Lu,Liang Min,Ye Hai-Bo,Shi Hai-Bo,Wang Lu-Yang,Yin Shan-Kai

Abstract

Abstract Neonatal jaundice is prevalent among newborns and can lead to severe neurological deficits, particularly sensorimotor dysfunction. Previous studies have shown that bilirubin (BIL) enhances the intrinsic excitability of central neurons and this can potentially contribute to their overexcitation, Ca2+ overload, and neurotoxicity. However, the cellular mechanisms underlying elevated neuronal excitability remain unknown. By performing patch-clamp recordings from neonatal neurons in the rat medial vestibular nucleus (MVN), a crucial relay station for locomotor and balance control, we found that BIL (3 μM) drastically increases the spontaneous firing rates by upregulating the current-mediated voltage-gated sodium channels (VGSCs), while shifting their voltage-dependent activation toward more hyperpolarized potentials. Immunofluorescence labeling and western immunoblotting with an anti-NaV1.1 antibody, revealed that BIL elevates the expression of VGSCs by promoting their recruitment to the membrane. Furthermore, we found that this VGSC-trafficking process is Ca2+ dependent because preloading MVN neurons with the Ca2+ buffer BAPTA-AM, or exocytosis inhibitor TAT-NSF700, prevents the effects of BIL, indicating the upregulated activity and density of functional VGSCs as the core mechanism accountable for the BIL-induced overexcitation of neonatal neurons. Most importantly, rectification of such overexcitation with a low dose of VGSC blocker lidocaine significantly attenuates BIL-induced cell death. We suggest that this enhancement of VGSC currents directly contributes to the vulnerability of neonatal brain to hyperbilirubinemia, implicating the activity and trafficking of NaV1.1 channels as a potential target for neuroprotection in cases of severe jaundice.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Canada Research Chairs

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3