Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression

Author:

Wu Tianqi,Wang Wenfeng,Shi Guohai,Hao Mingang,Wang Yingying,Yao Mengfei,Huang Yongqiang,Du Leilei,Zhang Xingming,Ye Dingwei,Bian Xiaojie,Wang JianhuaORCID

Abstract

AbstractProstate cancer (PCa) is a malignant tumor that seriously threatens men’s health worldwide. Recently, stromal cells in the tumor microenvironment (TME) have been reported to contribute to the progression of PCa. However, the role and mechanism of how PCa cells interact with stromal cells to reshape the TME remain largely unknown. Here, using a spontaneous prostate adenocarcinoma (PRAD) model driven by the loss of Pten and Hic1, we found that M2 macrophages markedly infiltrated the stroma of Pten and Hic1 double conditional knockout (dCKO) mice compared with those in control (Ctrl) mice due to higher TGF-β levels secreted by HIC1-deleted PCa cells. Mechanistically, TGF-β in TME promoted the polarization of macrophages into “M2” status by activating the STAT3 pathway and modulating c-Myc to upregulate CXCR4 expression. Meanwhile, TGF-β activated the fibroblasts to form cancer-associated fibroblasts (CAFs) that secrete higher CXCL12 levels, which bound to its cognate receptor CXCR4 on M2 macrophages. Upon interaction with CAFs, M2 macrophages secreted more CXCL5, which promoted the epithelial-mesenchymal transition (EMT) of PCa via CXCR2. Moreover, using the TGF-β receptor I antagonist, galunisertib, significantly inhibited the tumor growth and progression of the TRAMP-C1 cell line-derived subcutaneous tumor model. Finally, we confirmed that the stromal microenvironment was shaped by TGF-β in HIC1-deficient PCa and was associated with the progression of PCa.

Funder

National Natural Science Foundation of China

Track Program for Professor of Special Appointment (Eastern Scholar to J, Wang) at Shanghai Institutions of Higher Learning and Anhui University Natural Science Research Project

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3