Multiomics integration-based immunological characterizations of adamantinomatous craniopharyngioma in relation to keratinization

Author:

Xu Chunming,Wu Jie,Ye Jiye,Si YuanchengORCID,Zhang Jinshi,Wu Bowen,Pan Laisheng,Fu Jun,Ren Quan,Xie Shenhao,Tang Bin,Xiao Yingqun,Hong TaoORCID

Abstract

AbstractAlthough adamantinomatous craniopharyngioma (ACP) is a tumour with low histological malignancy, there are very few therapeutic options other than surgery. ACP has high histological complexity, and the unique features of the immunological microenvironment within ACP remain elusive. Further elucidation of the tumour microenvironment is particularly important to expand our knowledge of potential therapeutic targets. Here, we performed integrative analysis of 58,081 nuclei through single-nucleus RNA sequencing and spatial transcriptomics on ACP specimens to characterize the features and intercellular network within the microenvironment. The ACP environment is highly immunosuppressive with low levels of T-cell infiltration/cytotoxicity. Moreover, tumour-associated macrophages (TAMs), which originate from distinct sources, highly infiltrate the microenvironment. Using spatial transcriptomic data, we observed one kind of non-microglial derived TAM that highly expressed GPNMB close to the terminally differentiated epithelial cell characterized by RHCG, and this colocalization was verified by asmFISH. We also found the positive correlation of infiltration between these two cell types in datasets with larger cohort. According to intercellular communication analysis, we report a regulatory network that could facilitate the keratinization of RHCG+ epithelial cells, eventually causing tumour progression. Our findings provide a comprehensive analysis of the ACP immune microenvironment and reveal a potential therapeutic strategy base on interfering with these two types of cells.

Funder

National Natural Science Foundation of China

Ganpo555 Engineering Excellence of the Jiangxi Science and Technology Department

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3