PSMC2/CCND1 axis promotes development of ovarian cancer through regulating cell growth, apoptosis and migration

Author:

Zhu Dawei,Huang Jie,Liu Ning,Li Wei,Yan Limei

Abstract

AbstractOvarian cancer is known as one of the most common malignancies of the gynecological system, whose treatment is still not satisfactory because of the unclear understanding of molecular mechanism. PSMC2 is an essential component of 19 S regulatory granules in 26 S proteasome and its relationship with ovarian cancer is still not clear. In this study, we found that PSMC2 was upregulated in ovarian cancer tissues, associated with tumor grade and could probably predict poor prognosis. Knocking down the endogenous PSMC2 expression in ovarian cancer cells could decrease colony formation ability, cell motility and cell proliferation rate, along with increasing cell apoptosis rate. Cells models or xenografts formed by cells with relatively lower expression of PSMC2 exhibited weaker oncogenicity and slower growth rate in vivo. Moreover, gene microarray was used to analyze the alteration of gene expression profiling of ovarian cancer induced by PSMC2 knockdown and identify CCND1 as a potential downstream of PSMC2. Further study revealed the mutual regulation between PSMC2 and CCND1, and demonstrated that knockdown of CCND1 could enhance the regulatory effects induced by PSMC2 knockdown and overexpression of CCND1 reverses it. In summary, PSMC2 may promote the development of ovarian cancer through CCND1, which may predict poor prognosis of ovarian cancer patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Reference35 articles.

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J. Clin. 2020;70:7–30.

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018;68:394–424.

3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA: A Cancer J. Clinicians. 2016;66:115–32.

4. Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin. Oncol. Nurs. 2019;35:151–6.

5. Narod S. Can advanced-stage ovarian cancer be cured? Nat. Rev. Clin. Oncol. 2016;13:255–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3