CircMIB2 therapy can effectively treat pathogenic infection by encoding a novel protein

Author:

Zheng Weiwei,Wang Linchao,Geng Shang,Yang Liyuan,Lv Xing,Xin Shiying,Xu TianjunORCID

Abstract

AbstractThe mRNA therapy is widely used in the treatment of diseases due to its efficient characteristics, and the COVID-19 vaccine is the application of mRNA therapy. However, due to the instability of mRNA, mRNA vaccines often need lots of modifications to ensure its stability. Recent research shows that circRNA with stable RNA structure can encode protein, which provides a new direction for mRNA therapy. Here, we discovered a novel circRNA (circMIB2) derived from E3 ubiquitin-protein ligase MIB2 (MIB2) gene in lower vertebrate fish, which can translate into a 134 amino acid protein (MIB2-134aa) through m6A modification, and is involved in innate immunity. MIB2-134aa is completely consistent with the amino acid sequence of the two domains of host gene MIB2 protein; host gene MIB2 can target TRAF6 through the two domains and inhibit the innate immune response by promoting the ubiquitination degradation of the K11-link of TRAF6, MIB2-134aa also targets TRAF6 through these same domains. Interestingly, MIB2-134aa greatly reduced the degradation of TRAF6 by its host gene MIB2. More importantly, we found that circRNA therapy of circMIB2 can significantly inhibit the colonization of Vibrio anguillarum in zebrafish, and it provides a new direction for the treatment of pathogenic diseases of fish.

Funder

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Reference32 articles.

1. Wong E, Goldberg T. Mipomersen (kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. Pharm Ther. 2014;39:119.

2. Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Prim. 2017;3:1–20.

3. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.

4. Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380:549–58.

5. Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018;8:4016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3