Inhibition of PDGFRβ alleviates endothelial cell apoptotic injury caused by DRP-1 overexpression and mitochondria fusion failure after mitophagy

Author:

An Xiaohong,Ma Xiao,Liu Heng,Song Jing,Wei Tiange,Zhang Rongzhan,Zhan Xiao,Li Hongyang,Zhou JiaORCID

Abstract

Abstract Kawasaki disease (KD), described as “mucocutaneous lymph node syndrome”, affects infants and toddlers. Patients with KD suffer from an inflammatory cascade leading to vasculitis with a predilection for coronary arteries. While the symptoms and pathogenesis of KD have received more and more attention, the precise mechanisms are still debated. Researches show that endothelial dysfunction process in KD leads to arterial damage and affect clinical outcome. In this study, we constructed a Candida albicans water soluble fraction (CAWS)-induced KD murine model and penetrated investigating the mechanisms behind endothelial dysfunction. CAWS-induced mice presented remarkably elevated vascular endothelial cell growth factor (VEGF) levels. Abundant expression of VEGF was documented in all vessels that showed edema from acute KD. It has been reported that Platelet-derived growth factor (PDGF) co-expression normalizes VEGF-induced aberrant angiogenesis. Hyperexpression of PDGFRβ was induced in the thickened medial layer and vascular endothelium of KD mice. Masitinib (Mas) is an oral tyrosine kinase inhibitor of numerous targets, which can selectively target PDGFR signaling. We set out to explore whether Mas could regulate coronary pathology in KD. Mas administration significantly reduced the VEGF-induced endothelial cells migration. NOX4 was activated in vascular endothelial cells to produce more ROS. Mitochondrial dysregulated fission and mitophagy caused by DRP-1 overexpression precipitated the arterial endothelial cells injury. Here, mitophagy seemed to work as the driving force of DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. In summary, how mitophagy is regulated by DRP-1 under pathologic status is critical and complex, which may contribute to the development of specific therapeutic interventions in cardiovascular diseases patients, for example Masatinib, the inhibitor of PDGFRβ. Facts and questions Kawasaki disease causing systemic vasculitis, affects infants and toddlers. Coronary artery injury remains the major causes of morbidity and mortality. DRP-1 overexpression induces DRP-1/Bak/BNIP3-dependent endothelial cells apoptosis. PDGFRβ was high-expressed in the thickened medial layer of CAWS-induced KD mice. Inhibition of PDGFRβ signaling alleviates arterial endothelial cells injury.

Funder

the National Natural Science Foundation of China

the independent research fund of Yunnan Characteristic Plant Extraction Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3