ERK1/2-Nanog signaling pathway enhances CD44(+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas

Author:

Huang Chuang,Yoon Changhwan,Zhou Xiao-Hong,Zhou Ying-Chun,Zhou Wen-Wen,Liu Hong,Yang Xin,Lu Jun,Lee Sei Young,Huang Kun

Abstract

Abstract Head and neck squamous cell carcinomas (HNSCCs) harbor a subset of cells that are CD44(+) and present with malignancy and radiotherapy resistance. As a key regulator of self-renewal, Nanog expression not only determines cell fate in pluripotent cells but also mediates tumorigenesis in cancer cells; thus, we examined the role of Nanog in CD44(+) HNSCC. Three HNSCC cell lines, tumor xenografts, and patient tumors were examined. Nanog levels were significantly higher in CD44(+) HNSCC spheroids than in CD44(−) spheroids, and further increased when grown as spheroids to enrich for CSCs. CD44(+) spheroids showed a 3.4–7.5-fold increase in migration and invasion compared with CD44(−) spheroids and were resistant to radiation therapy, which was reversed by inhibiting Nanog. Nanog knockdown also decreased spheroid formation by 66.5–68.8%. Moreover, a phosphokinase array identified upregulated ERK1/2 signaling in CD44(+) HNSCC cells compared with that in CD44(−) cells. ERK1/2 signaling was found to regulate Nanog expression, aiding tumor progression, metastasis, and radiotherapy resistance. In xenograft models, the combination of radiation and Nanog or ERK1/2 inhibition inhibited tumor growth by 75.6% and 79.1%, respectively. In lung metastasis models, CD44(+) cells injected into the tail vein of mice led to significantly more lung metastases and higher Nanog expression level compared with that by ERK1/2-knockdown CD44(+) cells. Finally, in tumor tissues, CD44 and Nanog expression levels were correlated with tumorigenesis in HNSCC patients. Thus, targeting Nanog and the ERK1/2 signaling pathway may prevent or reverse CSC phenotypes and epithelial–mesenchymal transition that drive tumor progression, metastasis, and radiotherapy resistance in HNSCC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

the Performance Motivation and Guidance Special Project of Chongqing Science & Technology Commission

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3