RBMS3-induced circHECTD1 encoded a novel protein to suppress the vasculogenic mimicry formation in glioblastoma multiforme

Author:

Ruan Xuelei,Liu Yunhui,Wang Ping,Liu Libo,Ma Teng,Xue YixueORCID,Dong Weiwei,Zhao Yubo,E Tiange,Lin Hongda,Wang Di,Yang Chunqing,Song Jian,Liu Jiate,Deng Meiqi,An Ping,Lin Yang,Yang Jin,Cui Zheng,Cao Yaming,Liu XiaobaiORCID

Abstract

AbstractGlioblastoma multiforme (GBM) is a highly vascularized malignant cancer of the central nervous system, and the presence of vasculogenic mimicry (VM) severely limits the effectiveness of anti-vascular therapy. In this study, we identified downregulated circHECTD1, which acted as a key VM-suppressed factor in GBM. circHECTD1 elevation significantly inhibited cell proliferation, migration, invasion and tube-like structure formation in GBM. RIP assay was used to demonstrate that the flanking intron sequence of circHECTD1 can be specifically bound by RBMS3, thereby inducing circHECTD1 formation to regulate VM formation in GBM. circHECTD1 was confirmed to possess a strong protein-encoding capacity and the encoded functional peptide 463aa was identified by LC-MS/MS. Both circHECTD1 and 463aa significantly inhibited GBM VM formation in vivo and in vitro. Analysis of the 463aa protein sequence revealed that it contained a ubiquitination-related domain and promoted NR2F1 degradation by regulating the ubiquitination of the NR2F1 at K396. ChIP assay verified that NR2F1 could directly bind to the promoter region of MMP2, MMP9 and VE-cadherin, transcriptionally promoting the expression of VM-related proteins, which in turn enhanced VM formation in GBM. In summary, we clarified a novel pathway for RBMS3-induced circHECTD1 encoding functional peptide 463aa to mediate the ubiquitination of NR2F1, which inhibited VM formation in GBM. This study aimed to reveal new mechanisms of GBM progression in order to provide novel approaches and strategies for the anti-vascular therapy of GBM.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3