Effects of the mGlu2/3 receptor agonist LY379268 on two models of disturbed auditory evoked brain oscillations in mice

Author:

Dormann Oana-DanielaORCID,Schuelert Niklas,Rosenbrock Holger

Abstract

AbstractCognitive impairment is a core feature of schizophrenia and is poorly addressed by currently available medication. This is partly because the underlying circuits are insufficiently understood, and available animal models for brain dysfunction do not adequately mimic human pathology. To improve the translatability of animal studies and complement behavioral data, EEG measurements are being increasingly used in preclinical research. Brain oscillations are similar across species and can be impaired via several means. In this study, we used two approaches to impair early sensory processing and cortical oscillations in mice: a pharmacological model targeting NMDA receptor function in the whole brain via systemic MK-801 application and an optogenetic model targeting parvalbumin-positive (PV+) interneurons locally in the medial prefrontal cortex (mPFC). We evoked brain activity using auditory stimulation, a tool with high translatability from mouse to human. We then investigated the effect of LY379268, an agonist of mGlu2/3 receptors, a potential therapeutic target for schizophrenia, on single neuron and EEG responses. LY379268 was able to rescue MK-801-induced deficits for a variety of clinically relevant early sensory EEG biomarkers. Single neuron recordings revealed a strong effect of LY379268 on the signal-to-noise ratio during auditory stimulation and optogenetic inhibition of PV+ interneurons. Our results contribute to a better understanding of how group II metabotropic glutamate receptors modulate neuronal population and network activity under sensory stimulation while challenged pharmacologically or optogenetically.

Funder

Boehringer Ingelheim

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3