Differential brain ADRA2A and ADRA2C gene expression and epigenetic regulation in schizophrenia. Effect of antipsychotic drug treatment

Author:

Brocos-Mosquera Iria,Miranda-Azpiazu PatriciaORCID,Muguruza CarolinaORCID,Corzo-Monje Virginia,Morentin Benito,Meana J. JavierORCID,Callado Luis F.ORCID,Rivero GuadalupeORCID

Abstract

AbstractPostsynaptic α2A-adrenoceptor density is enhanced in the dorsolateral prefrontal cortex (DLPFC) of antipsychotic-treated schizophrenia subjects. This alteration might be due to transcriptional activation, and could be regulated by epigenetic mechanisms such as histone posttranslational modifications (PTMs). The aim of this study was to evaluate ADRA2A and ADRA2C gene expression (codifying for α2-adrenoceptor subtypes), and permissive and repressive histone PTMs at gene promoter regions in the DLPFC of subjects with schizophrenia and matched controls (n = 24 pairs). We studied the effect of antipsychotic (AP) treatment in AP-free (n = 12) and AP-treated (n = 12) subgroups of schizophrenia subjects and in rats acutely and chronically treated with typical and atypical antipsychotics. ADRA2A mRNA expression was selectively upregulated in AP-treated schizophrenia subjects (+93%) whereas ADRA2C mRNA expression was upregulated in all schizophrenia subjects (+53%) regardless of antipsychotic treatment. Acute and chronic clozapine treatment in rats did not alter brain cortex Adra2a mRNA expression but increased Adra2c mRNA expression. Both ADRA2A and ADRA2C promoter regions showed epigenetic modification by histone methylation and acetylation in human DLPFC. The upregulation of ADRA2A expression in AP-treated schizophrenia subjects might be related to observed bivalent chromatin at ADRA2A promoter region in schizophrenia (depicted by increased permissive H3K4me3 and repressive H3K27me3) and could be triggered by the enhanced H4K16ac at ADRA2A promoter. In conclusion, epigenetic predisposition differentially modulated ADRA2A and ADRA2C mRNA expression in DLPFC of schizophrenia subjects.

Funder

Ministerio de Economía y Competitividad

Eusko Jaurlaritza

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3