Impact of IDO activation and alterations in the kynurenine pathway on hyperserotonemia, NAD+ production, and AhR activation in autism spectrum disorder

Author:

Launay Jean-MarieORCID,Delorme Richard,Pagan Cécile,Callebert Jacques,Leboyer MarionORCID,Vodovar NicolasORCID

Abstract

AbstractHyperserotonemia is the most replicated biochemical anomaly associated with autism spectrum disorder (ASD) and has been reported in 35–46% of individuals with ASD. Serotonin is synthesised from the essential amino acid tryptophan (TRP). However, the main catabolic route of TRP is the kynurenine pathway (KP), which competes with serotonin synthesis when indoleamine dioxygenase (IDO) is activated. Using the same cohort of individuals with ASD, we used to report extensive studies of the serotonin/melatonin pathway, and found increased kynurenine (KYN), suggesting IDO activation in 58.7% of individuals with ASD (159/271), supported by a strong negative correlation between KYN/TRP ratio and miR-153-3p plasma levels, which negatively regulates IDO. IDO activation was associated with normoserotonemia, suggesting that IDO activation could mask hyperserotonemia which meant that hyperserotonemia, if not masked by IDO activation, could be present in ~94% of individuals with ASD. We also identified several KP alterations, independent of IDO status. We observed a decrease in the activity of 3-hydroxyanthranilate dioxygenase which translated into the accumulation of the aryl hydrocarbon receptor (AhR) selective ligand cinnabarinic acid, itself strongly positively correlated with the AhR target stanniocalcin 2. We also found a deficit in NAD+ production, the end-product of the KP, which was strongly correlated with plasma levels of oxytocin used as a stereotypical neuropeptide, indicating that regulated neuropeptide secretion could be limiting. These results strongly suggest that individuals with ASD exhibit low-grade chronic inflammation that is mediated in most cases by chronic AhR activation that could be associated with the highly prevalent gastrointestinal disorders observed in ASD, and explained IDO activation in ~58% of the cases. Taken together, these results extend biochemical anomalies of TRP catabolism to KP and posit TRP catabolism as a possible major component of ASD pathophysiology.

Publisher

Springer Science and Business Media LLC

Subject

Biological Psychiatry,Cellular and Molecular Neuroscience,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3