HACE1-mediated NRF2 activation causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells

Author:

Da Chenxing,Pu Jun,Liu Zhe,Wei Jing,Qu Yiping,Wu Yongxing,Shi Bingyin,Yang Jian,He Nongyue,Hou Peng

Abstract

AbstractHACE1, an E3 ubiquitin-protein ligase, is frequently inactivated and has been evidenced as a putative tumor suppressor in different types of cancer. However, its role in glioma remains elusive. Here, we observed increased expression of HACE1 in gliomas related to control subjects, and found a strong correlation of high HACE1 expression with poor prognosis in patients with WHO grade III and IV as well as low-grade glioma (LGG) patients receiving radiotherapy. HACE1 knockdown obviously suppressed malignant behaviors of glioma cells, while ectopic expression of HACE1 enhanced cell growth in vitro and in vivo. Further studies revealed that HACE1 enhanced protein stability of nuclear factor erythroid 2-related factor 2 (NRF2) by competitively binding to NRF2 with another E3 ligase KEAP1. Besides, HACE1 also promoted internal ribosome entry site (IRES)-mediated mRNA translation of NRF2. These effects did not depend on its E3 ligase activity. Finally, we demonstrated that HACE1 dramatically reduced cellular ROS levels by activating NRF2, thereby decreasing the response of glioma cells to radiation. Altogether, our data demonstrate that HACE1 causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells by activating NRF2, and indicate that it may act as the role of prognostic factor and potential therapeutic target in glioma.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3