Abstract
AbstractAfforestation is one of the most practised carbon dioxide removal methods but is constrained by the availability of suitable land and sufficient water resources. In this research, existing concepts of low-cost renewable electricity (RE) and seawater desalination are built upon to identify the global CO2 sequestration potential if RE-powered desalination plants were used to irrigate forests on arid land over the period 2030–2100. Results indicate a cumulative CO2 sequestration potential of 730 GtCO2 during the period. Global average cost is estimated to be €457 per tCO2 in 2030 but decrease to €100 per tCO2 by 2100, driven by the decreasing cost of RE and increasing CO2 sequestration rates of the forests. Regions closer to the coast with abundant solar resources and cooler climate experience the least costs, with costs as low as €50 per tCO2 by 2070. The results suggest a key role for afforestation projects irrigated with RE-based desalination within the climate change mitigation portfolio, which is currently based on bioenergy carbon capture and storage, and direct air carbon capture and storage plants.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Urban Studies,Renewable Energy, Sustainability and the Environment,Ecology,Geography, Planning and Development,Food Science,Global and Planetary Change
Reference63 articles.
1. IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).
2. Rueda, O., Mogollón, J. M., Tukker, A. & Scherer, L. Negative-emissions technology portfolios to meet the 1.5 °C target. Glob. Environ. Change 67, 102238 (2021).
3. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).
4. Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).
5. Food and Agricultural Organisation of the United Nations. Global Forest Resources Assessments: Terms and Definitions FRA 2020. (United Nations, 2020); https://www.fao.org/3/I8661EN/i8661en.pdf
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献