Heterogeneous digital biomarker integration out-performs patient self-reports in predicting Parkinson’s disease

Author:

Deng Kaiwen,Li Yueming,Zhang Hanrui,Wang Jian,Albin Roger L.,Guan YuanfangORCID

Abstract

AbstractParkinson’s disease (PD) is one of the first diseases where digital biomarkers demonstrated excellent performance in differentiating disease from healthy individuals. However, no study has systematically compared and leveraged multiple types of digital biomarkers to predict PD. Particularly, machine learning works on the fine-motor skills of PD are limited. Here, we developed deep learning methods that achieved an AUC (Area Under the receiver operator characteristic Curve) of 0.933 in identifying PD patients on 6418 individuals using 75048 tapping accelerometer and position records. Performance of tapping is superior to gait/rest and voice-based models obtained from the same benchmark population. Assembling the three models achieved a higher AUC of 0.944. Notably, the models not only correlated strongly to, but also performed better than patient self-reported symptom scores in diagnosing PD. This study demonstrates the complementary predictive power of tapping, gait/rest and voice data and establishes integrative deep learning-based models for identifying PD.

Funder

American Parkinson Disease Association

Eli Lilly and Company

Michael J. Fox Foundation for Parkinson’s Research

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3