Strong ethanol- and frequency-dependent ecological interactions in a community of wine-fermenting yeasts

Author:

Lax SimonORCID,Gore JeffORCID

Abstract

AbstractNatural wine fermentation depends on a complex consortium of native microorganisms rather than inoculation of industrial yeast strains. While this diversity of yeasts can result in an increased repertoire of wine flavors and aromas, it can also result in the inhibition of Saccharomyces cerevisiae, which is uniquely able to complete fermentation. Understanding how yeast species interact with each other within the wine-fermenting community and disentangling ecological interactions from environmental impacts on growth rates, is key to developing synthetic communities that can provide the sensory benefits of natural fermentation while lowering the risk of stuck ferments. Here, we co-culture all pairwise combinations of five commonly isolated wine-fermenting yeasts and show that competitive outcomes are a strong function of ethanol concentration, with frequency-dependent bistable interactions common at low alcohol and an increasingly transitive competitive hierarchy developing as alcohol increases. We also show that pairwise outcomes are predictive of five-species community outcomes, and that frequency dependence in pairwise interactions propagates to alternative states in the full community, highlighting the importance of species abundance as well as composition. We also observe that monoculture growth rates are only weakly predictive of competitive success, highlighting the need to incorporate ecological interactions when designing synthetic fermenting communities.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3