Single-cell sequencing reveals increased LAMB3-positive basal keratinocytes and ZNF90-positive fibroblasts in autologous cultured epithelium

Author:

Lian Weiling,Zeng Xuanhao,Li Jian,Zang Qing,Liu Yating,Lv Haozhen,Chen Shujun,Huang Shiyi,Shen Jiayi,Tang Luyan,Xu Yu,Wu Fuyue,Zhang QiORCID,Xu JinhuaORCID

Abstract

AbstractAutologous cultured epithelium grafting (ACEG) presents a promising treatment for refractory vitiligo, yet concerns regarding infections and immunological reactions hinder its surgical use due to serum and feeder dependencies. Addressing this, we culture autologous epithelium under serum- and feeder-free (SFF) conditions, comparing its safety and efficacy with serum- and feeder-dependent (SFD) conditions in stable vitiligo patients, and we discover no significant differences in repigmentation between the SFF and SFD grafts. Single-cell RNA transcriptomics on SFF- and SFD-cultured epithelium alongside healthy skin reveal increased populations of LAMB3+ basal keratinocytes and ZNF90+ fibroblasts in the SFF sheets. Functional analyses showcase active cellular metabolism in LAMB3+ basal keratinocytes, vital in extracellular matrix homeostasis, while ZNF90+ fibroblasts demonstrate increased differentiation, essential in collagen formation for cell adhesion. Importantly, these cell populations in SFF sheets exhibit enhanced interactions with melanocytes compared to SFD sheets. Further, knockdown experiments of LAMB3 in keratinocytes and ZNF90 in fibroblasts lead to a downregulation in melanocyte ligand-receptor-related genes. Overall, SFF sheets demonstrate comparable efficacy to SFD sheets, offering superior safety. LAMB3+ basal keratinocytes and ZNF90+ fibroblasts act as potential drivers behind repigmentation in ACEG under SFF conditions. This study provides translational insights into ACEG repigmentation and potential therapeutic targets for vitiligo.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3