Insights into the recognition mechanism in the UBR box of UBR4 for its specific substrates

Author:

Jeong Da Eun,Lee Hye Seon,Ku BonsuORCID,Kim Cheol-HeeORCID,Kim Seung JunORCID,Shin Ho-ChulORCID

Abstract

AbstractThe N-end rule pathway is a proteolytic system involving the destabilization of N-terminal amino acids, known as N-degrons, which are recognized by N-recognins. Dysregulation of the N-end rule pathway results in the accumulation of undesired proteins, causing various diseases. The E3 ligases of the UBR subfamily recognize and degrade N-degrons through the ubiquitin-proteasome system. Herein, we investigated UBR4, which has a distinct mechanism for recognizing type-2 N-degrons. Structural analysis revealed that the UBR box of UBR4 differs from other UBR boxes in the N-degron binding sites. It recognizes type-2 N-terminal amino acids containing an aromatic ring and type-1 N-terminal arginine through two phenylalanines on its hydrophobic surface. We also characterized the binding mechanism for the second ligand residue. This is the report on the structural basis underlying the recognition of type-2 N-degrons by the UBR box with implications for understanding the N-end rule pathway.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3