On the functional brain networks involved in tool-related action understanding

Author:

Federico GiovanniORCID,Osiurak FrançoisORCID,Ciccarelli Giuseppina,Ilardi Ciro Rosario,Cavaliere Carlo,Tramontano Liberatore,Alfano Vincenzo,Migliaccio Miriana,Di Cecca Angelica,Salvatore Marco,Brandimonte Maria Antonella

Abstract

AbstractTool-use skills represent a significant cognitive leap in human evolution, playing a crucial role in the emergence of complex technologies. Yet, the neural mechanisms underlying such capabilities are still debated. Here we explore with fMRI the functional brain networks involved in tool-related action understanding. Participants viewed images depicting action-consistent (e.g., nail-hammer) and action-inconsistent (e.g., scarf-hammer) object-tool pairs, under three conditions: semantic (recognizing the tools previously seen in the pairs), mechanical (assessing the usability of the pairs), and control (looking at the pairs without explicit tasks). During the observation of the pairs, task-based left-brain functional connectivity differed within conditions. Compared to the control, both the semantic and mechanical conditions exhibited co-activations in dorsal (precuneus) and ventro-dorsal (inferior frontal gyrus) regions. However, the semantic condition recruited medial and posterior temporal areas, whereas the mechanical condition engaged inferior parietal and posterior temporal regions. Also, when distinguishing action-consistent from action-inconsistent pairs, an extensive frontotemporal neural circuit was activated. These findings support recent accounts that view tool-related action understanding as the combined product of semantic and mechanical knowledge. Furthermore, they emphasize how the left inferior parietal and anterior temporal lobes might be considered as hubs for the cross-modal integration of physical and conceptual knowledge, respectively.

Funder

Ministero della Salute

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3