Macroscale intrinsic dynamics are associated with microcircuit function in focal and generalized epilepsies

Author:

Yang Siqi,Zhou Yimin,Peng Chengzong,Meng Yao,Chen HuafuORCID,Zhang Shaoshi,Kong Xiaolu,Kong Ru,Yeo B. T. Thomas,Liao WeiORCID,Zhang ZhiqiangORCID

Abstract

AbstractEpilepsies are a group of neurological disorders characterized by abnormal spontaneous brain activity, involving multiscale changes in brain functional organizations. However, it is not clear to what extent the epilepsy-related perturbations of spontaneous brain activity affect macroscale intrinsic dynamics and microcircuit organizations, that supports their pathological relevance. We collect a sample of patients with temporal lobe epilepsy (TLE) and genetic generalized epilepsy with tonic-clonic seizure (GTCS), as well as healthy controls. We extract massive temporal features of fMRI BOLD time-series to characterize macroscale intrinsic dynamics, and simulate microcircuit neuronal dynamics used a large-scale biological model. Here we show whether macroscale intrinsic dynamics and microcircuit dysfunction are differed in epilepsies, and how these changes are linked. Differences in macroscale gradient of time-series features are prominent in the primary network and default mode network in TLE and GTCS. Biophysical simulations indicate reduced recurrent connection within somatomotor microcircuits in both subtypes, and even more reduced in GTCS. We further demonstrate strong spatial correlations between differences in the gradient of macroscale intrinsic dynamics and microcircuit dysfunction in epilepsies. These results emphasize the impact of abnormal neuronal activity on primary network and high-order networks, suggesting a systematic abnormality of brain hierarchical organization.

Funder

National Natural Science Foundation of China

Chengdu University of Information Technology

Science and Technology foundation of Sichuan Province

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3