Generation of a high yield vaccine backbone for influenza B virus in embryonated chicken eggs

Author:

Aslam Sadaf,Rajendran Madhusudan,Kriti DivyaORCID,Kurland Andrew,Johnson Jeffrey,van Bakel HarmORCID,Krammer FlorianORCID,García-Sastre AdolfoORCID,Ayllon JuanORCID

Abstract

AbstractInfluenza B virus (IBV) strains are one of the components of seasonal influenza vaccines in both trivalent and quadrivalent formulations. The vast majority of these vaccines are produced in embryonated chickens’ eggs. While optimized backbones for vaccine production in eggs exist and are in use for influenza A viruses, no such backbones exist for IBVs, resulting in unpredictable production yields. To generate an optimal vaccine seed virus backbone, we have compiled a panel of 71 IBV strains from 1940 to present day, representing the known temporal and genetic variability of IBV circulating in humans. This panel contains strains from the B/Victoria/2/87-like lineage, B/Yamagata/16/88-like lineage and the ancestral lineage that preceded their split to provide a diverse set that would help to identify a suitable backbone which can be used in combination with hemagglutinin (HA) and neuraminidase (NA) glycoproteins from any IBV strain to be incorporated into the seasonal vaccine. We have characterized and ranked the growth profiles of the 71 IBV strains and the best performing strains were used for co-infection of eggs, followed by serial passaging to select for high-growth reassortant viruses. After serial passaging, we selected 10 clonal isolates based on their growth profiles assessed by hemagglutination and plaque-forming units. We then generated reverse genetics systems for the three clones that performed best in growth curves. The selected backbones were then used to generate different reassortant viruses with HA/NA combinations from high and low titer yielding wild type IBV. When the growth profiles of the recombinant reassortant viruses were tested, the low titer yielding HA/NA viruses with the selected backbones yielded higher titers similar to those from high titer yielding HA/NA combinations. The use of these IBV backbones with improved replication in eggs might increase yields for the influenza B virus components of seasonal influenza virus vaccines.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology

Reference29 articles.

1. Krammer, F. et al. Influenza. Nat. Rev. Dis. Prim. 4, 3 (2018).

2. Centers for disease control and prevention (CDC), https://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html (2020).

3. Bernard N. Fields, D. M. K., P. M. Howley. Vol. 2 Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia (2013).

4. Osterhaus, A. D., Rimmelzwaan, G. F., Martina, B. E., Bestebroer, T. M. & Fouchier, R. A. Influenza B virus in seals. Science 288, 1051–1053 (2000).

5. Tsai, C. P. & Tsai, H. J. Influenza B viruses in pigs, Taiwan. Influenza Other Respir. Viruses 13, 91–105 (2019).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3