Impact of glycan cloud on the B-cell epitope prediction of SARS-CoV-2 Spike protein

Author:

Wintjens RenéORCID,Bifani Amanda Makha,Bifani Pablo

Abstract

AbstractThe SARS-CoV-2 outbreak originated in China in late 2019 and has since spread to pandemic proportions. Diagnostics, therapeutics and vaccines are urgently needed. We model the trimeric Spike protein, including flexible loops and all N-glycosylation sites, in order to elucidate accessible epitopes for antibody-based diagnostics, therapeutics and vaccine development. Based on published experimental data, six homogeneous glycosylation patterns and two heterogeneous ones were used for the analysis. The glycan chains alter the accessible surface areas on the S-protein, impeding antibody-antigen recognition. In presence of glycan, epitopes on the S1 subunit, that notably contains the receptor binding domain, remain mostly accessible to antibodies while those present on the S2 subunit are predominantly inaccessible. We identify 28 B-cell epitopes in the Spike structure and group them as non-affected by the glycan cloud versus those which are strongly masked by the glycan cloud, resulting in a list of favourable epitopes as targets for vaccine development, antibody-based therapy and diagnostics.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3