Development of functionally relevant potency assays for monovalent and multivalent vaccines delivered by evolving technologies

Author:

Sanyal GautamORCID

Abstract

AbstractA potency or potency-indicating assay is a regulatory requirement for the release of every lot of a vaccine. Potency is a critical quality attribute that is also monitored as a stability indicator of a vaccine product. In essence, a potency measurement is a test of the functional integrity of the antigen and is intended to ensure that the antigen retains immunocompetence, i.e., the ability to stimulate the desired immune response, in its final formulation. Despite its central importance, there is incomplete clarity about the definition and expectation of a potency assay. This article provides a perspective on the purpose, value, and challenges associated with potency testing for vaccines produced by new technologies. The focus is on messenger RNA vaccines in the light of experience gained with recombinant protein-based vaccines, which offer the opportunity to directly correlate in vitro antigenicity with in vivo immunogenicity. The challenges with developing immunologically relevant in vitro assays are discussed especially for multivalent vaccine products, the importance of which has been reinforced by the ongoing emergence of SARS-CoV-2 variants of concern. Immunoassay-based release of multivalent vaccine products, such as those containing multiple antigens from different variants or serotypes of the same virus, require antibodies that are selective for each antigen and do not significantly cross-react with the others. In the absence of such exclusively specific antibodies, alternative functional assays with demonstrable correlation to immunogenicity may be acceptable. Initiatives for geographically distributed vaccine technology facilities should include establishing these assay capabilities to enable rapid delivery of vaccines globally.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Infectious Diseases,Pharmacology,Immunology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3