Author:
Yagi Shunsuke,Yamada Ikuya,Tsukasaki Hirofumi,Seno Akihiro,Murakami Makoto,Fujii Hiroshi,Chen Hungru,Umezawa Naoto,Abe Hideki,Nishiyama Norimasa,Mori Shigeo
Abstract
AbstractThe oxygen evolution reaction that occurs during water oxidation is of considerable importance as an essential energy conversion reaction for rechargeable metal–air batteries and direct solar water splitting. Cost-efficient ABO3 perovskites have been studied extensively because of their high activity for the oxygen evolution reaction; however, they lack stability, and an effective solution to this problem has not yet been demonstrated. Here we report that the Fe4+-based quadruple perovskite CaCu3Fe4O12 has high activity, which is comparable to or exceeding those of state-of-the-art catalysts such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ and the gold standard RuO2. The covalent bonding network incorporating multiple Cu2+ and Fe4+ transition metal ions significantly enhances the structural stability of CaCu3Fe4O12, which is key to achieving highly active long-life catalysts.
Publisher
Springer Science and Business Media LLC
Cited by
480 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献