Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Roles of microRNAs during prostatic tumorigenesis and tumor progression

Abstract

Prostate cancer (PCa) is considered to be a frequently diagnosed cancer in males with high mortality worldwide, but the molecular mechanism responsible for prostate tumorigenesis and progression remains unclear. Increasing evidence has shown that microRNAs (miRNAs) play an important role in PCa. In this review, we focus on the current advances about the role of miRNAs in regulating tumorigenesis and progression of PCa, mainly in suppressing or promoting PCa growth and metastasis, and maintaining the pluripotency of PCa stem cells (PCSC). More studies on miRNAs will provide a better understanding of their regulatory mechanisms in PCa.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Lars Dyrskjøt, Donna E. Hansel, … Dan Theodorescu

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  PubMed  Google Scholar 

  2. Catz SD, Johnson JL . BCL-2 in prostate cancer: a minireview. Apoptosis 2003; 8: 29–37.

    CAS  PubMed  Google Scholar 

  3. Chuang AY, DeMarzo AM, Veltri RW, Sharma RB, Bieberich CJ, Epstein JI . Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma. Am J Surg Pathol 2007; 31: 1246–1255.

    PubMed  Google Scholar 

  4. Andriole GL, Crawford ED, Grubb RL, Buys SS, Chia D, Church TR et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 2009; 360: 1310–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Millikan RE, Wen S, Pagliaro LC, Brown MA, Moomey B, Do KA et al. Phase III trial of androgen ablation with or without three cycles of systemic chemotherapy for advanced prostate cancer. J Clin Oncol 2008; 26: 5936–5942.

    PubMed  PubMed Central  Google Scholar 

  6. Pili R, Häggman M, Stadler WM, Gingrich JR, Assikis VJ, Björk A et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol 2011; 29: 4022–4028.

    CAS  PubMed  Google Scholar 

  7. Hobert O . Gene regulation by transcription factors and microRNAs. Science 2008; 319: 1785–1786.

    CAS  PubMed  Google Scholar 

  8. Iorio MV, Croce CM . MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27: 5848–5856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67: 6130–6135.

    CAS  PubMed  Google Scholar 

  11. Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S et al. MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 2009; 16: 206–216.

    CAS  PubMed  Google Scholar 

  12. Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 2011; 71: 4443–4453.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kogo R, Mimori K, Tanaka F, Komune S, Mori M . Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res 2011; 17: 4277–4284.

    CAS  PubMed  Google Scholar 

  14. Zhang W, Zhu J, Efferson CL, Ware C, Tammam J, Angagaw M et al. Inhibition of tumor growth progression by antiandrogens and mTOR inhibitor in a Pten-deficient mouse model of prostate cancer. Cancer Res 2009; 69: 7466–7472.

    CAS  PubMed  Google Scholar 

  15. Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 2010; 285: 19076–19084.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jalava SE, Urbanucci A, Latonen L, Waltering KK, Sahu B, Jänne OA et al. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 2012; 31: 4460–4471.

    CAS  PubMed  Google Scholar 

  17. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009; 69: 7165–7169.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009; 138: 245–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J et al. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 2010; 9: 108.

    PubMed  PubMed Central  Google Scholar 

  20. Takayama K, Tsutsumi S, Katayama S, Okayama T, Horie-Inoue K, Ikeda K et al. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 2011; 30: 619–630.

    CAS  PubMed  Google Scholar 

  21. Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate 2011; 71: 604–614.

    CAS  PubMed  Google Scholar 

  22. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271–1277.

    CAS  PubMed  Google Scholar 

  23. Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Saccà M, Memeo L et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011; 30: 4231–4242.

    CAS  PubMed  Google Scholar 

  24. Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010; 18: 181–187.

    CAS  PubMed  Google Scholar 

  25. Porkka KP, Ogg EL, Saramäki OR, Vessella RL, Pukkila H, Lähdesmäki H et al. The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromosomes Cancer 2011; 50: 499–509.

    CAS  PubMed  Google Scholar 

  26. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109–1123.

    CAS  PubMed  Google Scholar 

  27. Ozen M, Creighton CJ, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  28. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong Q, Meng P, Wang T, Qin W, Qin W, Wang F et al. MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One 2010; 5: e10147.

    PubMed  PubMed Central  Google Scholar 

  30. Nadiminty N, Tummala R, Lou W, Zhu Y, Shi XB, Zou JX et al. MicroRNA let-7c is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One 2012; 7: e32832.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41: 843–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE, Nitsch R et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10: 987–993.

    CAS  PubMed  Google Scholar 

  33. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J 2009; 28: 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  36. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dews M et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci USA 2009; 106: 3384–3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    CAS  PubMed  Google Scholar 

  38. Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sañudo A et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol 2011; 29: 265–269.

    CAS  PubMed  Google Scholar 

  39. Nadiminty N, Tummala R, Lou W, Zhu Y, Zhang J, Chen X et al. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J Biol Chem 2012; 287: 1527–1537.

    CAS  PubMed  Google Scholar 

  40. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J . Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094–2105.

    CAS  PubMed  Google Scholar 

  41. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009; 125: 345–352.

    CAS  PubMed  Google Scholar 

  42. Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer 2010; 102: 883–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu G, Chen D, Li X, Yang K, Wang H, Wu W . MiR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 2010; 10: 190–197.

    PubMed  Google Scholar 

  44. Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y et al. miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 2010; 127: 2804–2814.

    CAS  PubMed  Google Scholar 

  45. Tao J, Wu D, Xu B, Qian W, Li P, Lu Q et al. MicroRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep 2012; 27: 1967–1975.

    CAS  PubMed  Google Scholar 

  46. Yamasaki T, Yoshino H, Enokida H, Hidaka H, Chiyomaru T, Nohata N et al. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol 2012; 40: 1821–1830.

    CAS  PubMed  Google Scholar 

  47. Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer 2012; 106: 405–413.

    CAS  PubMed  Google Scholar 

  48. Patron JP, Fendler A, Bild M, Jung U, Müller H, Arntzen MØ et al. MiR-133b targets antiapoptotic genes and enhances death receptor-induced apoptosis. PLoS One 2012; 7: e35345.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schneider TJ, Fischer GM, Donohoe TJ, Colarusso TP, Rothstein TL . A novel gene coding for a Fas apoptosis inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B lymphocytes. J Exp Med 1999; 189: 949–956.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiang Y, Song Y, Wang Z, Chen Y, Yue Z, Xu H et al. Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J Gastrointest Surg 2011; 15: 63–70.

    PubMed  Google Scholar 

  51. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 2011; 18: 74–82.

    PubMed  PubMed Central  Google Scholar 

  52. Viticchiè G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011; 10: 1121–1131.

    PubMed  Google Scholar 

  53. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res 2011; 17: 5287–5298.

    CAS  PubMed  Google Scholar 

  54. Watahiki A, Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M et al. MicroRNAs associated with metastatic prostate cancer. PLoS One 2011; 6: e24950.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hulf T, Sibbritt T, Wiklund ED, Patterson K, Song JZ, Stirzaker C et al. Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 2013; 32: 2891–2899.

    CAS  PubMed  Google Scholar 

  56. Moretti R, Limonta P, Valdagni R, Daidone MG, Zaffaroni N . miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase C epsilon. Cancer Res 2009; 69: 2287–2295.

    PubMed  Google Scholar 

  57. Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH et al. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci USA 2012; 109: 15312–15317.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gandellini P, Profumo V, Casamichele A, Fenderico N, Borrelli S, Petrovich G et al. MiR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death Differ 2012; 19: 1750–1760.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B . Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 2010; 1: e105.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Boll K, Reiche K, Kasack K, Mörbt N, Kretzschmar AK, Tomm JM et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 2012; 32: 277–285.

    PubMed  Google Scholar 

  61. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vandewalle C, Comijn J, De Craene B, Vermassen P, Bruyneel E, Andersen H et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2007; 33: 6566–6578.

    Google Scholar 

  63. Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR et al. MiR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009; 27: 1712–1721.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Slabáková E, Pernicová Z, Slavíčková E, Staršíchová A, Kozubík A, Souček K . TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate 2011; 71: 1332–1343.

    PubMed  Google Scholar 

  65. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol 2012; 32: 941–953.

    PubMed  PubMed Central  Google Scholar 

  66. Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2012; 32: 296–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 2012; 40: 3689–3703.

    CAS  PubMed  Google Scholar 

  68. Puhr M, Hoefer J, Schäfer G, Erb HH, Oh SJ, Klocker H et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am J Pathol 2012; 181: 2188–2201.

    CAS  PubMed  Google Scholar 

  69. Barron N, Keenan J, Gammell P, Martinez VG, Freeman A, Masters JR et al. Biochemical relapse following radical prostatectomy and miR-200a levels in prostate cancer. Prostate 2012; 72: 1193–1199.

    CAS  PubMed  Google Scholar 

  70. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7: 2591–2600.

    CAS  PubMed  Google Scholar 

  71. Rokhlin OW, Scheinker VS, Taghiyev AF, Bumcrot D, Glover RA, Cohen MB . MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol Ther 2008; 7: 1288–1296.

    CAS  PubMed  Google Scholar 

  72. Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res 2012; 4: 14–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kojima K, Fujita Y, Nozawa Y, Deguchi T, Ito M . MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 2010; 70: 1501–1512.

    CAS  PubMed  Google Scholar 

  74. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol 2010; 12: 457–467.

    CAS  PubMed  Google Scholar 

  75. Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 2012; 7: e29722.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov 2012; 2: 236–247.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS et al. MicroRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications and AKT pathways. Clin Cancer Res 2013; 19: 73–84.

    CAS  PubMed  Google Scholar 

  78. Hagman Z, Larne O, Edsjö A, Bjartell A, Ehrnström RA, Ulmert D et al. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 2010; 127: 2768–2776.

    CAS  PubMed  Google Scholar 

  79. Zhang X, Liu S, Hu T, Liu S, He Y, Sun S . Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 2009; 50: 490–499.

    CAS  PubMed  Google Scholar 

  80. Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 2010; 24: 2754–2759.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 2012; 31: 1985–1998.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z et al. MiR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 2011; 350: 207–213.

    CAS  PubMed  Google Scholar 

  83. Clapé C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F et al. MiR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 2009; 4: e7542.

    PubMed  PubMed Central  Google Scholar 

  84. White NM, Youssef YM, Fendler A, Stephan C, Jung K, Yousef GM . The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer. Biol Chem 2012; 393: 379–389.

    CAS  PubMed  Google Scholar 

  85. Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D et al. Identification of miRs-143 and -145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 2011; 6: e20341.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S et al. The functional significance of microRNA-145 in prostate cancer. Br J Cancer 2010; 103: 256–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687–12690.

    CAS  PubMed  Google Scholar 

  88. Suh SO, Chen Y, Zaman MS, Hirata H, Yamamura S, Shahryari V et al. MicroRNA-145 is regulated by DNA methylation and p53 gene mutation in prostate cancer. Carcinogenesis 2011; 32: 772–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 2011; 38: 1093–1101.

    CAS  PubMed  Google Scholar 

  90. Al-Alwan M, Olabi S, Ghebeh H, Barhoush E, Tulbah A, Al-Tweigeri T et al. Fascin is a key regulator of breast cancer invasion that acts via the modification of metastasis-associated molecules. PLoS One 2011; 6: e27339.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Stewart CJ, Crook M, Loi S . Fascin expression in endocervical neoplasia: correlation with tumour morphology and growth pattern. J Clin Pathol 2012; 65: 213–217.

    PubMed  Google Scholar 

  92. Chiyomaru T, Tatarano S, Kawakami K, Enokida H, Yoshino H, Nohata N et al. SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer. Prostate (e-pub ahead of print 25 February 2011; doi:10.1002/pros.21372).

  93. Lin PC, Chiu YL, Banerjee S, Park K, Mosquera JM, Giannopoulou E et al. Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Res 2012; 73: 1232–1244.

    PubMed  PubMed Central  Google Scholar 

  94. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013; 32: 4130–4138.

    CAS  PubMed  Google Scholar 

  95. Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY et al. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012; 12: 492.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dehm SM, Tindall DJ . Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007; 21: 2855–2863.

    CAS  PubMed  Google Scholar 

  98. Yuan X, Balk SP . Mechanisms mediating androgenreceptor reactivation after castration. Urol Oncol 2009; 27: 36–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 2008; 378: 492–504.

    CAS  PubMed  Google Scholar 

  100. Ouyang X, Jessen WJ, Al-Ahmadie H, Serio AM, Lin Y, Shih WJ et al. Activator protein-1 transcription factors are associated with progression and recurrence of prostate cancer. Cancer Res 2008; 68: 2132–2144.

    CAS  PubMed  Google Scholar 

  101. Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002; 62: 6659–6666.

    CAS  PubMed  Google Scholar 

  102. Barton BE, Karras JG, Murphy TF, Barton A, Huang HF . Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther 2004; 3: 11–20.

    CAS  PubMed  Google Scholar 

  103. Yang CH, Yue J, Fan M, Pfeffer LM . IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res 2010; 70: 8108–8116.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kasahara K, Taguchi T, Yamasaki I, Kamada M, Yuri K, Shuin T . Detection of genetic alterations in advanced prostate cancer by comparative genomic hybridization. Cancer Genet Cytogenet 2002; 137: 59–63.

    CAS  PubMed  Google Scholar 

  105. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008; 27: 4373–4379.

    CAS  PubMed  Google Scholar 

  106. Shi GH, Ye DW, Yao XD, Zhang SL, Dai B, Zhang HL et al. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen -independent prostate cancer PC3 cells. Acta Pharmacol Sin 2010; 31: 867–873.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer 2010; 9: 12.

    PubMed  PubMed Central  Google Scholar 

  108. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One 2011; 6: 1843–1853.

    Google Scholar 

  109. Coppola V, Musumeci M, Patrizii M, Cannistraci A, Addario A, Maugeri-Saccà M et al. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Oncogene 2013; 32: 1843.

    CAS  PubMed  Google Scholar 

  110. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON . Identification of a cell of origin for human prostate cancer. Science 2010; 329: 568–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON . Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 2010; 107: 2610–2615.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Reis ST, Pontes-Junior J, Antunesnes AA, Dall Oglio MF, Dip N et al. miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer. BMC Urol 2012; 12: 14.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 2010; 13: 356–361.

    CAS  PubMed  Google Scholar 

  114. He X, Zhu Z, Johnson C, Stoops J, Eaker AE, Bowen W et al. PIK3IP1 a negative regulator of PI3K, suppresses the development of hepatocellular carcinoma. Cancer Res 2008; 68: 5591–5598.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68: 6162–6170.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mercatelli N, Coppola V, Bonci D, Miele F, Costantini A, Guadagnoli M et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 2008; 3: e4029.

    PubMed  PubMed Central  Google Scholar 

  117. Stinson S, Lackner MR, Adai AT, Yu N, Kim HJ, O’Brien C et al. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci Signal 2011; 4: pt5.

    CAS  PubMed  Google Scholar 

  118. Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 2012; 31: 634–642.

    CAS  PubMed  Google Scholar 

  119. Galardi S, Mercatelli N, Farace MG, Ciafrè SA . NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 2011; 39: 3892–3902.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun T, Yang M, Chen S, Balk S, Pomerantz M, Hsieh CL et al. The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 2012; 72: 1093–1103.

    CAS  PubMed  Google Scholar 

  121. Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P . The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res 2009; 69: 3356–3363.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 2007; 282: 23716–23724.

    CAS  PubMed  Google Scholar 

  123. Green D, Karpatkin S . Role of thrombin as a tumor growth factor. Cell Cycle 2010; 9: 656–661.

    CAS  PubMed  Google Scholar 

  124. Hu L, Ibrahim S, Liu C, Skaar J, Pagano M, Karpatkin S . Thrombin induces tumor cell cycle activation and spontaneous growth by down-regulation of p27Kip1, in association with the up-regulation of Skp2 and MiR-222. Cancer Res 2009; 69: 3374–3381.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila) 2011; 4: 76–86.

    CAS  Google Scholar 

  126. Lin D, Cui F, Bu Q, Yan C . The expression and clinical significance of GTP-binding RAS-like 3 (ARHI) and microRNA 221 and 222 in prostate cancer. J Int Med Res 2011; 39: 1870–1875.

    CAS  PubMed  Google Scholar 

  127. Bao JJ, Le XF, Wang RY, Yuan J, Wang L, Atkinson EN et al. Reexpression of the tumor suppressor gene ARHI induces apoptosis in ovarian and breast cancer cells through a caspase-independent calpain-dependent pathway. Cancer Res 2002; 62: 7264–7272.

    CAS  PubMed  Google Scholar 

  128. Fuse M, Kojima S, Enokida H, Chiyomaru T, Yoshino H, Nohata N et al. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 2012; 57: 691–699.

    CAS  PubMed  Google Scholar 

  129. DeVere White RW, Vinall RL, Tepper CG, Shi XB . MicroRNAs and their potential for translation in prostate cancer. Urol Oncol 2009; 27: 307–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 2007; 104: 19983–19988.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shi XB, Xue L, Ma AH, Tepper CG, Kung HJ, White RW . MiR-125b promotes growth of prostate cancer xenograft tumor through targeting pro-apoptotic genes. Prostate 2011; 71: 538–549.

    CAS  PubMed  Google Scholar 

  132. Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate 2011; 71: 567–574.

    CAS  PubMed  Google Scholar 

  133. Hudson RS, Yi M, Esposito D, Glynn SA, Starks AM, Yang Y et al. MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene 2013; 32: 4139–4147.

    CAS  PubMed  Google Scholar 

  134. Kim K, Chadalapaka G, Pathi SS, Jin UH, Lee JS, Park YY et al. Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters. Mol Cancer Ther 2012; 11: 1852–1862.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Fletcher CE, Dart DA, Sita-Lumsden A, Cheng H, Rennie PS, Bevan CL . Androgen-regulated processing of the oncomir miR-27a, which targets Prohibitin in prostate cancer. Hum Mol Genet 2012; 21: 3112–3127.

    CAS  PubMed  Google Scholar 

  136. Wu Z, He B, He J, Mao X . Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate (e-pub ahead of print 11 October 2012; doi:10.1002/pros.22600).

    PubMed  Google Scholar 

  137. Dalerba P, Cho RW, Clarke MF . Cancer stem cells: models and concepts. Annu Rev Med 2007; 58: 267–284.

    CAS  PubMed  Google Scholar 

  138. Clarke MF, Fuller M . Stem cells and cancer: two faces of eve. Cell 2006; 124: 1111–1115.

    CAS  PubMed  Google Scholar 

  139. Liu C, Tang DG . MicroRNA regulation of cancer stem cells. Cancer Res 2011; 71: 5950–5954.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    CAS  PubMed  Google Scholar 

  141. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25: 1696–1708.

    CAS  PubMed  Google Scholar 

  143. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG . Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+α2β1+ cell population is enriched in tumor-initiating cells. Cancer Res 2007; 67: 6796–6805.

    CAS  PubMed  Google Scholar 

  144. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    CAS  PubMed  Google Scholar 

  145. Kashat M, Azzouz L, Sarkar SH, Kong D, Li Y, Sarkar FH . Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am J Transl Res 2012; 4: 432–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Büssing I, Slack FJ, Grosshans H . Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008; 14: 400–409.

    PubMed  Google Scholar 

  148. Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 2010; 5: e12445.

    PubMed  PubMed Central  Google Scholar 

  149. Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One 2012; 7: e33729.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274–7284.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu C, Kelnar K, Vlassov AV, Brown D, Wang J, Tang DG . Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res 2012; 72: 3393–3404.

    CAS  PubMed  Google Scholar 

  152. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS . MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137: 647–658.

    CAS  PubMed  Google Scholar 

  153. Yamaguchi S, Yamahara K, Homma K, Suzuki S, Fujii S, Morizane R et al. The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis 2011; 219: 468–474.

    CAS  PubMed  Google Scholar 

  154. Liu T, Cheng W, Huang Y, Huang Q, Jiang L, Guo L . Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res 2012; 318: 424–434.

    CAS  PubMed  Google Scholar 

  155. Huang S, Guo W, Tang Y, Ren D, Zou X, Peng X . miR-143 and miR-145 inhibit stem cell characteristics of PC-3 prostate cancer cells. Oncol Rep 2012; 28: 1831–1837.

    CAS  PubMed  Google Scholar 

  156. Polytarchou C, Iliopoulos D, Struhl K . An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci USA 2012; 109: 14470–14475.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jia Y, Liu H, Zhuang Q, Xu S, Yang Z, Li J et al. Tumorigenicity of cancer stem-like cells derived from hepatocarcinoma is regulated by microRNA-145. Oncol Rep 2012; 27: 1865–1872.

    CAS  PubMed  Google Scholar 

  158. Wu Y, Liu S, Xin H, Jiang J, Younglai E, Sun S et al. Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer 2011; 117: 3989–3998.

    CAS  PubMed  Google Scholar 

  159. Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by down-regulating the Wnt/beta-catenin signaling pathway. Carcinogenesis (e-pub ahead of print 19 December 2012).

    PubMed  Google Scholar 

  160. Saini S, Majid S, Shahryari V, Arora S, Yamamura S, Chang I et al. miRNA-708 control of CD44(+) prostate cancer-initiating cells. Cancer Res 2012; 72: 3618–3630.

    CAS  PubMed  Google Scholar 

  161. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141: 672–675.

    PubMed  Google Scholar 

  162. Yu DC, Li QG, Ding XW, Ding YT . Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci 2011; 12: 2055–2063.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 2011; 128: 608–616.

    CAS  PubMed  Google Scholar 

  165. Gonzales JC, Fink LM, Goodman OB, Symanowski JT, Vogelzang NJ, Ward DC . Comparison of circulating MicroRNA 141 to circulating tumor cells, lactate dehydrogenase, and prostate-specific antigen for determining treatment response in patients with metastatic prostate cancer. Clin Genitourin Cancer 2011; 9: 39–45.

    PubMed  Google Scholar 

  166. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 2012; 106: 768–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nguyen HC, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS et al. Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 2012; 73: 346–354.

    PubMed  PubMed Central  Google Scholar 

  168. Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer 2012; 131: 652–661.

    CAS  PubMed  Google Scholar 

  169. Xiao J, Gong AY, Eischeid AN, Chen D, Deng C, Young CY et al. miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 2012; 72: 1514–1522.

    CAS  PubMed  Google Scholar 

  170. Hao Y, Zhao Y, Zhao X, He C, Pang X, Wu TC et al. Improvement of prostate cancer detection by integrating the PSA test with miRNA expression profiling. Cancer Invest 2011; 29: 318–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B et al. Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate 2011; 71: 326–331.

    CAS  PubMed  Google Scholar 

  172. Yaman Agaoglu F, Kovancilar M, Dizdar Y, Darendeliler E, Holdenrieder S, Dalay N et al. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumour Biol 2011; 32: 583–588.

    CAS  PubMed  Google Scholar 

  173. Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate 2012; 72: 1469–1477.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Li T, Li RS, Li YH, Zhong S, Chen YY, Zhang CM et al. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. J Urol 2012; 187: 1466–1472.

    CAS  PubMed  Google Scholar 

  175. Sanders I, Holdenrieder S, Walgenbach-Brünagel G, von Ruecker A, Kristiansen G, Müller SC et al. Evaluation of reference genes for the analysis of serum miRNA in patients with prostate cancer, bladder cancer and renal cell carcinoma. Int J Urol 2012; 19: 1017–1025.

    CAS  PubMed  Google Scholar 

  176. Stark A, Brennecke J, Russell RB, Cohen SM . Identification of Drosophila microRNA targets. PLoS Biol 2003; 1: e60.

    PubMed  PubMed Central  Google Scholar 

  177. Budd WT, Weaver DE, Anderson J, Zehner ZE . microRNA dysregulation in prostate cancer: network analysis reveals preferential regulation of highly connected nodes. Chem Biodivers 2012; 9: 857–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Östling P, Leivonen SK, Aakula A, Kohonen P, Mäkelä R, Hagman Z et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011; 71: 1956–1967.

    PubMed  Google Scholar 

  179. Alshalalfa M . MicroRNA response elements-mediated miRNA-miRNA interactions in prostate cancer. Adv Bioinformatics 2012; 2012: Article ID: 839837.

    Google Scholar 

Download references

Acknowledgements

This study was supported by funds to W-Q Gao from the Chinese Ministry of Science and Technology (2012CB966800 and 2013CB945600), the National Natural Science Foundation of China (81130038), Science and Technology Commission of Shanghai Municipality (Pujiang program), Shanghai Education Committee Key Disciplines and Specialties Foundation (J50208), Shanghai Health Bureau Key Disciplines and Specialties Foundation and KC Wong foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-Q Gao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, YX., Gao, WQ. Roles of microRNAs during prostatic tumorigenesis and tumor progression. Oncogene 33, 135–147 (2014). https://doi.org/10.1038/onc.2013.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.54

Keywords

This article is cited by

Search

Quick links