Abstract
AbstractThe multifaceted adverse effects of reduced gravity pose a significant challenge to human spaceflight. Previous studies have shown that bone formation by osteoblasts decreases under microgravity conditions, both real and simulated. However, the effects of partial gravity on osteoblasts’ function are less well understood. Utilizing the software-driven newer version of the Random Positioning Machine (RPMSW), we simulated levels of partial gravity relevant to future manned space missions: Mars (0.38 G), Moon (0.16 G), and microgravity (Micro, ~10−3 G). Short-term (6 days) culture yielded a dose-dependent reduction in proliferation and the enzymatic activity of alkaline phosphatase (ALP), while long-term studies (21 days) showed a distinct dose-dependent inhibition of mineralization. By contrast, expression levels of key osteogenic genes (Alkaline phosphatase, Runt-related Transcription Factor 2, Sparc/osteonectin) exhibited a threshold behavior: gene expression was significantly inhibited when the cells were exposed to Mars-simulating partial gravity, and this was not reduced further when the cells were cultured under simulated Moon or microgravity conditions. Our data suggest that impairment of cell function with decreasing simulated gravity levels is graded and that the threshold profile observed for reduced gene expression is distinct from the dose dependence observed for cell proliferation, ALP activity, and mineral deposition. Our study is of relevance, given the dearth of research into the effects of Lunar and Martian gravity for forthcoming space exploration.
Funder
National Aeronautics and Space Administration
Temple University Dissertation Completion Grant
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)
Reference66 articles.
1. LeBlanc, A. D., Spector, E. R., Evans, H. J. & Sibonga, J. D. Skeletal responses to space flight and the bed rest analog: a review. J. Musculoskelet. Neuronal Interact. 7, 33–47 (2007).
2. Lang, T. et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Min. Res. 19, 1006–1012 (2004).
3. Zerath, E. et al. Spaceflight inhibits bone formation independent of corticosteroid status in growing rats. J. Bone Miner. Res. 15, 1310–1320 (2000).
4. Nelson, E. S. & Jules, K. The microgravity environment for experiments on the International Space Station. J. Gravit. Physiol. 11, 1–10 (2004).
5. Zerath, E. et al. Effects of spaceflight and recovery on rat humeri and vertebrae: histological and cell culture studies. J. Appl Physiol. 81, 164–171 (1996).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献