Effectiveness of caffeine and blue-enriched light on cognitive performance and electroencephalography correlates of alertness in a spaceflight robotics simulation

Author:

Flynn-Evans Erin E.ORCID,Rueger Melanie,Liu Andrew M.ORCID,Galvan-Garza Raquel C.,Natapoff Alan,Oman Charles M.ORCID,Lockley Steven W.ORCID

Abstract

AbstractHuman cognitive impairment associated with sleep loss, circadian misalignment and work overload is a major concern in any high stress occupation but has potentially catastrophic consequences during spaceflight human robotic interactions. Two safe, wake-promoting countermeasures, caffeine and blue-enriched white light have been studied on Earth and are available on the International Space Station. We therefore conducted a randomized, placebo-controlled, cross-over trial examining the impact of regularly timed low-dose caffeine (0.3 mg per kg per h) and moderate illuminance blue-enriched white light (~90 lux, ~88 melEDI lux, 6300 K) as countermeasures, separately and combined, in a multi-night simulation of sleep-wake shifts experienced during spaceflight among 16 participants (7 F, ages 26–55). We find that chronic administration of low-dose caffeine improves subjective and objective correlates of alertness and performance during an overnight work schedule involving chronic sleep loss and circadian misalignment, although we also find that caffeine disrupts subsequent sleep. We further find that 90 lux of blue-enriched light moderately reduces electroencephalogram (EEG) power in the theta and delta regions, which are associated with sleepiness. These findings support the use of low-dose caffeine and potentially blue-enriched white light to enhance alertness and performance among astronauts and shiftworking populations.

Funder

National Space Biomedical Research Institute

National Aeronautics and Space Administration

U.S. Department of Health & Human Services | NIH | National Center for Research Resources

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3