Abstract
AbstractThe senses of limb position and movement become degraded in low gravity. One explanation is a gravity-dependent loss of fusimotor activity. In low gravity, position and movement sense accuracy can be recovered if elastic bands are stretched across the joint. Recent studies using instrumented joysticks have confirmed that aiming and tracking accuracy can be recovered in weightlessness by changing viscous and elastic characteristics of the joystick. It has been proposed that the muscle spindle signal, responsible for generating position sense in the mid-range of joint movement, is combined with input from joint receptors near the limits of joint movement to generate a position signal that covers the full working range of the joint. Here it is hypothesised that in low gravity joint receptors become unresponsive because of the loss of forces acting on the joint capsule. This leads to a loss of position and movement sense which can be recovered by imposing elastic forces across the joint.
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Physics and Astronomy (miscellaneous),Agricultural and Biological Sciences (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Materials Science (miscellaneous),Medicine (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献