Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation

Author:

Viana Damià,Walston Steven T.ORCID,Masvidal-Codina EduardORCID,Illa XaviORCID,Rodríguez-Meana BrunoORCID,del Valle Jaume,Hayward Andrew,Dodd Abbie,Loret Thomas,Prats-Alfonso ElisabetORCID,de la Oliva Natàlia,Palma Marie,del Corro ElenaORCID,del Pilar Bernicola María,Rodríguez-Lucas Elisa,Gener ThomasORCID,de la Cruz Jose Manuel,Torres-Miranda Miguel,Duvan Fikret TaygunORCID,Ria NicolaORCID,Sperling Justin,Martí-Sánchez Sara,Spadaro Maria Chiara,Hébert Clément,Savage SineadORCID,Arbiol JordiORCID,Guimerà-Brunet AntonORCID,Puig M. VictoriaORCID,Yvert BlaiseORCID,Navarro Xavier,Kostarelos KostasORCID,Garrido Jose A.ORCID

Abstract

AbstractOne of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3–5 mC cm2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.

Funder

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3