Vacuum levitation and motion control on chip

Author:

Melo Bruno,T. Cuairan Marc,Tomassi Grégoire F. M.ORCID,Meyer NadineORCID,Quidant RomainORCID

Abstract

AbstractBy isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. All-electrical cooling of an optically levitated nanoparticle;Physical Review Applied;2024-08-05

2. Nanoparticle levitation on-chip;Nature Nanotechnology;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3