PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging

Author:

Huang Shih-ChengORCID,Kothari Tanay,Banerjee ImonORCID,Chute Chris,Ball Robyn L.,Borus Norah,Huang Andrew,Patel Bhavik N.ORCID,Rajpurkar Pranav,Irvin Jeremy,Dunnmon Jared,Bledsoe Joseph,Shpanskaya Katie,Dhaliwal Abhay,Zamanian Roham,Ng Andrew Y.,Lungren Matthew P.

Abstract

AbstractPulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model—PENet, to automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose. The PENet is a 77-layer 3D convolutional neural network (CNN) pretrained on the Kinetics-600 dataset and fine-tuned on a retrospective CTPA dataset collected from a single academic institution. The PENet model performance was evaluated in detecting PE on data from two different institutions: one as a hold-out dataset from the same institution as the training data and a second collected from an external institution to evaluate model generalizability to an unrelated population dataset. PENet achieved an AUROC of 0.84 [0.82–0.87] on detecting PE on the hold out internal test set and 0.85 [0.81–0.88] on external dataset. PENet also outperformed current state-of-the-art 3D CNN models. The results represent successful application of an end-to-end 3D CNN model for the complex task of PE diagnosis without requiring computationally intensive and time consuming preprocessing and demonstrates sustained performance on data from an external institution. Our model could be applied as a triage tool to automatically identify clinically important PEs allowing for prioritization for diagnostic radiology interpretation and improved care pathways via more efficient diagnosis.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3