Predicting recurrent chat contact in a psychological intervention for the youth using natural language processing

Author:

Hornstein SilvanORCID,Scharfenberger Jonas,Lueken UlrikeORCID,Wundrack RichardORCID,Hilbert KevinORCID

Abstract

AbstractChat-based counseling hotlines emerged as a promising low-threshold intervention for youth mental health. However, despite the resulting availability of large text corpora, little work has investigated Natural Language Processing (NLP) applications within this setting. Therefore, this preregistered approach (OSF: XA4PN) utilizes a sample of approximately 19,000 children and young adults that received a chat consultation from a 24/7 crisis service in Germany. Around 800,000 messages were used to predict whether chatters would contact the service again, as this would allow the provision of or redirection to additional treatment. We trained an XGBoost Classifier on the words of the anonymized conversations, using repeated cross-validation and bayesian optimization for hyperparameter search. The best model was able to achieve an AUROC score of 0.68 (p < 0.01) on the previously unseen 3942 newest consultations. A shapely-based explainability approach revealed that words indicating younger age or female gender and terms related to self-harm and suicidal thoughts were associated with a higher chance of recontacting. We conclude that NLP-based predictions of recurrent contact are a promising path toward personalized care at chat hotlines.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3