Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials

Author:

Esteva Andre,Feng JeanORCID,van der Wal Douwe,Huang Shih-Cheng,Simko Jeffry P.,DeVries Sandy,Chen Emmalyn,Schaeffer Edward M.,Morgan Todd M.ORCID,Sun YilunORCID,Ghorbani Amirata,Naik Nikhil,Nathawani DhruvORCID,Socher Richard,Michalski Jeff M.,Roach Mack,Pisansky Thomas M.,Monson Jedidiah M.,Naz Farah,Wallace James,Ferguson Michelle J.,Bahary Jean-Paul,Zou JamesORCID,Lungren Matthew,Yeung SerenaORCID,Ross Ashley E.,Kucharczyk Michael,Souhami Luis,Ballas Leslie,Peters Christopher A.,Liu Sandy,Balogh Alexander G.,Randolph-Jackson Pamela D.,Schwartz David L.,Girvigian Michael R.,Saito Naoyuki G.,Raben Adam,Rabinovitch Rachel A.,Katato Khalil,Sandler Howard M.ORCID,Tran Phuoc T.,Spratt Daniel E.,Pugh Stephanie,Feng Felix Y.,Mohamad Osama,

Abstract

AbstractProstate cancer is the most frequent cancer in men and a leading cause of cancer death. Determining a patient’s optimal therapy is a challenge, where oncologists must select a therapy with the highest likelihood of success and the lowest likelihood of toxicity. International standards for prognostication rely on non-specific and semi-quantitative tools, commonly leading to over- and under-treatment. Tissue-based molecular biomarkers have attempted to address this, but most have limited validation in prospective randomized trials and expensive processing costs, posing substantial barriers to widespread adoption. There remains a significant need for accurate and scalable tools to support therapy personalization. Here we demonstrate prostate cancer therapy personalization by predicting long-term, clinically relevant outcomes using a multimodal deep learning architecture and train models using clinical data and digital histopathology from prostate biopsies. We train and validate models using five phase III randomized trials conducted across hundreds of clinical centers. Histopathological data was available for 5654 of 7764 randomized patients (71%) with a median follow-up of 11.4 years. Compared to the most common risk-stratification tool—risk groups developed by the National Cancer Center Network (NCCN)—our models have superior discriminatory performance across all endpoints, ranging from 9.2% to 14.6% relative improvement in a held-out validation set. This artificial intelligence-based tool improves prognostication over standard tools and allows oncologists to computationally predict the likeliest outcomes of specific patients to determine optimal treatment. Outfitted with digital scanners and internet access, any clinic could offer such capabilities, enabling global access to therapy personalization.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Computer Science Applications,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3