Abstract
AbstractText messaging can promote healthy behaviors, like adherence to medication, yet its effectiveness remains modest, in part because message content is rarely personalized. Reinforcement learning has been used in consumer technology to personalize content but with limited application in healthcare. We tested a reinforcement learning program that identifies individual responsiveness (“adherence”) to text message content and personalizes messaging accordingly. We randomized 60 individuals with diabetes and glycated hemoglobin A1c [HbA1c] ≥ 7.5% to reinforcement learning intervention or control (no messages). Both arms received electronic pill bottles to measure adherence. The intervention improved absolute adjusted adherence by 13.6% (95%CI: 1.7%–27.1%) versus control and was more effective in patients with HbA1c 7.5- < 9.0% (36.6%, 95%CI: 25.1%–48.2%, interaction p < 0.001). We also explored whether individual patient characteristics were associated with differential response to tested behavioral factors and unique clusters of responsiveness. Reinforcement learning may be a promising approach to improve adherence and personalize communication at scale.
Funder
U.S. Department of Health & Human Services | NIH | National Institute on Aging
U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献