Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories

Author:

Choi HyeongrakORCID,Pant Mihir,Guha Saikat,Englund DirkORCID

Abstract

AbstractA central challenge for many quantum technologies concerns the generation of large entangled states of individually addressable quantum memories. Here, we show that percolation theory allows the rapid generation of arbitrarily large graph states by heralding the entanglement in a lattice of atomic memories with single-photon detection. This approach greatly reduces the time required to produce large cluster states for quantum information processing including universal one-way quantum computing. This reduction puts our architecture in an operational regime where demonstrated coupling, collection, detection efficiencies, and coherence time are sufficient. The approach also dispenses the need for time-consuming feed-forward, high cooperativity interfaces and ancilla single photons, and can tolerate a high rate of site imperfections. We derive the minimum coherence time to scalably create large cluster states, as a function of photon-collection efficiency. We also propose a variant of the architecture with long-range connections, which is even more resilient to site yields. We analyze our architecture for nitrogen vacancy (NV) centers in diamond, but the approach applies to any atomic or atom-like systems.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference73 articles.

1. Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014).

2. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

3. Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014).

4. Cai, J., Retzker, A., Jelezko, F. & Plenio, M. B. Towards a large-scale quantum simulator on diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013).

5. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011).

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3